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E. Epelbaum1,3,a, W. Glöckle1,b, and U.-G. Meißner2,c

1 Ruhr-Universität Bochum, Institut für Theoretische Physik II, D-44870 Bochum, Germany
2 Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Nußallee 14-16, D-53115 Bonn, Germany
3 Jefferson Laboratory, Newport News, VA 23606, USA

Received: 11 August 2003 / Revised version: 23 September 2003 /
Published online: 20 January 2004 – c© Società Italiana di Fisica / Springer-Verlag 2004
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Abstract. Recently, we have proposed a new cut-off scheme for pion loop integrals in the two-pion exchange
potential. This method allows for a consistent implementation of constraints from pion-nucleon scattering
and has been successfully applied to peripheral nucleon-nucleon partial waves. We now consider low partial
waves in the non-perturbative regime, where the regularized Lippmann-Schwinger equation has to be solved
in order to generate the bound and scattering states. We observe an improved description of most of the
phase shifts when going from next-to- to next-to-next-to-leading order in the chiral expansion. We also
find a good description of the deuteron properties. In addition, the new cut-off scheme allows to avoid the
presence of unphysical deeply bound states. We discuss the cut-off dependence of the four-nucleon low-
energy constants and show that their numerical values can be understood in terms of resonance saturation.
This connects the effective field theory approach to boson exchange phenomenology.

PACS. 13.75.Cs Nucleon-nucleon interactions (including antinucleons, deuterons, etc.) – 21.30.-x Nuclear
forces – 12.39.Fe Chiral Lagrangians

1 Introduction

In ref. [1] (which is called I from here on), we have pre-
sented a method to improve the convergence of the chiral
expansion for the nucleon-nucleon (NN) interaction based
on spectral-function regularization. In earlier approaches,
an unphysically strong attraction in the isoscalar central
part of the chiral two-pion exchange (TPE) at next-to-
next-to-leading (NNLO) order in the chiral expansion was
found. This is due to the high-momentum components of
the exchanged pions, which appear when using dimen-
sional regularization (or equivalent schemes), and which
cannot be properly treated in the corresponding effec-
tive field theory (EFT). Using a cut-off (or spectral func-
tion) regularization instead of the dimensional one and
taking reasonable values for the momentum space cut-
off allows to remove spurious short-distance physics as-
sociated with high-momentum intermediate states and to
greatly improve the convergence of the chiral expansion.
In particular, one can use without problems the values of
the dimension-two low-energy constants (LECs) ci consis-
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tent with elastic pion-nucleon scattering data. More pre-
cisely, in I we have considered the spectral functions ob-
tained from the next-to-leading order (NLO) and NNLO
TPE contributions and argued that only masses below the
chiral-symmetry-breaking scale should be taken into ac-
count explicitly in the loop integrals, while shorter-range
contributions have to be represented by contact interac-
tions. This can be easily implemented by applying a cut-off
to the spectral functions. We have also proposed a sim-
ple and convenient way to derive analytic expressions for
regularized TPE in the momentum space based on the
spectral-function representation.

In I, we have considered the peripheral partial waves
(l ≥ 2), because at NNLO these are given entirely by one-
pion exchange (OPE) and TPE with no free parameters.
We have calculated these phases in Born approximation
which should be legitimate at least for the D- and higher
waves. The results for the D- and F -waves are still not
completely converged at NNLO, but the error of a few (1)◦

at Elab = 300 MeV for the D- (F -) waves appears reason-
able. There is no breakdown of the chiral expansion for
D-waves beyond Tlab = 50 MeV and for F -waves beyond
Tlab = 150 MeV as found earlier using dimensional regu-
larization. In this paper, we apply our method (cut-off
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regularization, CR, for short) to the low partial waves
in the non-perturbative regime, where we have to solve
the regularized Lippmann-Schwinger equation to generate
the bound and scattering states. As will be demonstrated,
there are no deeply bound states (for a reasonable range of
cut-offs in the spectral-function representation of the effec-
tive potential and regularized Lippmann-Schwinger equa-
tion), and low-energy observables are not affected by CR.

Our paper is organized as follows. In sect. 2 we briefly
review the formalism detailed in I and discuss the regu-
larization of the Lippmann-Schwinger equation. In sect. 3
we apply the formalism to np partial waves, with partic-
ular emphasis on the low phases (S- and P -waves). We
also discuss the range parameters in the S-waves and the
deuteron properties and compare to the results obtained
in dimensional regularization (DR). The physics behind
the values of the low-energy constants accompanying the
four-nucleon operators is also elucidated. The summary
and conclusions are given in sect. 4.

2 Formalism

In I we have calculated the NN potential at NNLO in the
low-momentum expansion using cut-off regularization in
the spectral-function representation. For completeness, we
briefly review the pertinent formalism here.

The chiral TPE potential up to NNLO can be decom-
posed into isoscalar and isovector central, spin-spin and
tensor components, generically called Wi(q) here. These
functions Wi(q) can be represented by a continuous su-
perposition of Yukawa functions (modulo subtractions):

Wi(q) =
2

π

∫ ∞

2Mπ

dµµ
σi(µ)

µ2 + q2
, (2.1)

where the σi(µ) are the corresponding mass spectra (spec-
tral functions). Further, q is the momentum transfer in the
centre-of-mass system (c.m.s.), i.e. q = p ′ − p, where p ′

and p are final and initial nucleon momenta, respectively,
and q ≡ |q |. These spectral functions contain the whole
dynamics related to the exchanged two-pion system and
can be obtained from the potential via [2]

σi(µ) = Im
[

Wi(0
+ − iµ)

]

. (2.2)

The spectral-function regularization proposed in I sup-
presses the large-µ contributions to the integrals eq. (2.1)
via a sharp cut-off,

σi(µ)→ θ(Λ̃− µ)σi(µ) , (2.3)

and thus regulates the short-distance contributions of the
TPE in a natural way.

Next, we briefly review the chiral expansion of the NN
potential. The LO potential V (0) is given by OPE and two

contact interactions, V (0) = V
(0)
1π + V

(0)
cont, with

V
(0)
1π = −

(

gA
2Fπ

)2

τ 1 · τ 2
σ1 · qσ2 · q
q2 +M2

π

,

V
(0)
cont = CS + CT σ1 · σ2 , (2.4)

where σ (τ ) are nucleon spin (isospin) matrices. The NLO
corrections are due to two-pion exchange

V
(2)
2π = − τ 1 · τ 2

384π2F 4
π

LΛ̃(q)

{

4M2
π(5g

4
A − 4g2

A − 1)

+q2(23g4
A − 10g2

A − 1) +
48g4

AM
4
π

4M2
π + q2

}

− 3g4
A

64π2F 4
π

LΛ̃(q)

{

σ1 · qσ2 · q− q2 σ1 · σ2

}

,

(2.5)

as well as short-distance contact interactions (local four-
fermion terms with two derivatives)

V
(2)
cont. = C1 q

2 + C2 k
2 + (C3 q

2 + C4 k
2)(σ1 · σ2)

+iC5
1

2
(σ1 + σ2) · (q× k) + C6 (q · σ1)(q · σ2)

+C7 (k · σ1)(k · σ2) . (2.6)

Here, k = (p ′ + p)/2, and the cut-off regularized loop

function LΛ̃(q) reads:

LΛ̃(q) = θ(Λ̃− 2Mπ)
ω

2q
ln
Λ̃2ω2 + q2s2 + 2Λ̃qωs

4M2
π(Λ̃

2 + q2)
,

ω =
√

q2 + 4M2
π ,

s =

√

Λ̃2 − 4M2
π . (2.7)

The regularized expression for TPE provides an explicit
exclusion of the short-range components in the spectrum
(i.e. those ones with the range r < Λ̃−1). Furthermore, at
NLO one also has a correction to OPE. It takes the form

V
(2)
1π =

gA d18 M
2
π

F 2
π

τ 1 · τ 2
(σ1 · q )(σ2 · q )

q2 +M2
π

, (2.8)

where the LEC d18 is related to the Goldberger-Treiman
discrepancy. Thus, the complete NLO contribution is

given by V (2) = V
(2)
1π + V

(2)
2π + V

(2)
cont.. Finally, the cut-

off regularized NNLO corrections are represented by the
subleading TPE potential. It takes the form

V
(3)
2π = − 3g2

A

16πF 4
π

{

2M2
π(2c1 − c3)− c3q

2

}

(2M2
π + q2)

×AΛ̃(q)− g2
A

32πF 4
π

c4(4M
2
π + q2)AΛ̃(q) (τ 1 · τ 2)

×
[

(σ1 · q )(σ2 · q )− q2(σ1 · σ2)
]

, (2.9)

where

AΛ̃(q) = θ(Λ̃− 2Mπ)
1

2q
arctan

q(Λ̃− 2Mπ)

q2 + 2Λ̃Mπ

. (2.10)

In what follows, we use these values for the pion de-
cay constant Fπ, the pion masses Mπ± , Mπ0 and the nu-
cleon mass m: Fπ = 92.4 MeV, Mπ± = 139.570 MeV,
Mπ0 = 134.977 MeV, m = 938.918 MeV. In I we adopted
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the following values for the nucleon axial-vector coupling
gA and the LEC d18: gA = 1.26, d18 = −0.97 GeV−2. Al-
ternatively, one can use the larger value gA = 1.29 and
completely neglect the NLO correction to OPE given in
eq. (2.8) (i.e. set d18 = 0). In this work we will adopt
this second possibility. Notice, however, that such a re-
placement is not valid in a general case, since the corre-
sponding chiral gA- and d18-vertices with three and more
pion fields are different. For the LECs c1,4, we adopt the
central values from the Q3-analysis of the πN system [3]:
c1 = −0.81 GeV−1, c4 = 3.40 GeV−1. For the constant c3
the value c3 = −3.40 GeV−1 is used, which is on the lower
side but still consistent with the results from ref. [3]: c3 =
−4.69± 1.34 GeV−1. This value of the LEC c3 was found
in ref. [4] to be consistent with empirical NN phase shifts
as well as the results from dispersion and conventional me-
son theories. Further, the same values of the LECs c1,3,4
will be used in the upcoming N3LO analysis which will be
published separately [5]. Interestingly, similar values for
the LEC c3 have been extracted recently from matching
the chiral expansion of the nucleon mass to lattice gauge
theory results at pion masses between 500 and 800 MeV,
see [6] for more details. Notice that at NNLO in the chi-
ral expansion of the NN potential one could, in principle,
use the values of the LECs obtained in the Q2-analysis of
πN scattering. This certain freedom in choosing the val-
ues of ci results in some uncertainty in observables which
might be viewed as an estimation of some higher-order
effects. We would also like to remark that a new np and
pp partial-wave analysis of the Nijmegen group [7] leads
to c3 = −4.78± 0.10 GeV−1 and c4 = 3.96± 0.22 GeV−1

using c1 = −0.76 GeV−1 as input. These values of the
LECs c3,4 are close to the ones of ref. [3].

Using this potential, one can now generate bound and
scattering states. For that, consider the partial-wave pro-
jected Lippmann-Schwinger (LS) equation for the NN
T -matrix:

T sjl, l′(p
′, p) = V sj

l, l′(p
′, p) +

∑

l′′

∫

d3p′′

(2π)3
V sj
l, l′′(p

′, p′′)

× m

p 2 − (p′′)2 + iε
T sjl′′, l′(p

′′, p) , (2.11)

where V = V (0)+V (2)+V (3), m is the nucleon mass. The
on-shell S and T matrices are related via

Ssjl, l′(p, p) = δl l′ −
i

8π2
pmT sjl, l′(p, p) . (2.12)

Contrary to our previous work I, where we have been in-
terested only in peripheral NN scattering and thus calcu-
lated the T -matrix perturbatively (i.e. keeping only the
Born term in eq. (2.11)), we now have to solve the LS
equation non-perturbatively.

Although we have regularized the TPE contributions
by cutting off the large-mass components in the spectrum
(or, equivalently, by explicitly shifting the corresponding
short-distance components to contact terms), the resulting
potential still behaves incorrectly at large q (or, equiva-
lently, at small r). The effective potential is valid for small

values of the momentum transfer q and becomes meaning-
less for q & Λχ. Moreover, since the potential V grows with
increasing momenta q, the LS equation (2.11) is ultraviolet
divergent and needs to be regularized. Following the stan-
dard procedure, see e.g. [8], we introduce an additional
cut-off in the LS equation by multiplying the potential
V (p, p ′) with a regulator function fΛ,

V (p, p ′)→ fΛ(p)V (p, p ′) fΛ(p′) . (2.13)

In what follows, we use the exponential regulator function

fΛ(p′) = exp[−p6/Λ6] . (2.14)

Certainly, both cut-offs Λ̃ and Λ are introduced in order
to remove high-momentum components of the interact-
ing nucleon and pion fields. The physical meaning and
the implementation of the cut-offs Λ̃ and Λ is, however,
quite different from each other: while the first one removes
the short-distance portion of the TPE nuclear force, the
second one guarantees that the high-momentum nucleon
states do not contribute to the scattering process. One ad-
vantage of the method proposed in I is that one can (but
does not have to) choose similar procedures for regulating
the spectral functions and the LS equation. For further
discussion of the role and optimal choice of the cut-off Λ
in the LS equation the reader is referred to refs. [9,10].

In what follows we will vary the cut-off Λ in the LS
equation in the range 450–600 MeV at NLO and 450–
650 MeV at NNLO, which is a significantly larger range
than in ref. [11]. The cut-off Λ̃ is varied independently in
the range 500–700 MeV, which is consistent with the vari-
ation of Λ. Notice that in principle, more elegant regular-
ization prescriptions, like e.g. lattice regularization, would
allow to regularize pion loop integrals and the Lippmann-
Schwinger equation in the same way without introducing
two independent scales Λ and Λ̃. Finally, we remark that
a pion-nucleon form factor would also do the job, but such
form factors are not well defined in quantum field theory.
We thus eschew the use of such form factors here.

3 Results

For any choice of the cut-offs Λ and Λ̃, the LECs CS,T
and C1...7 are fixed from a fit to the np S- and P -waves
and the mixing parameter ε1 for laboratory energies below
100 MeV. This is the same procedure as used in ref. [8]. In
the following, we display and discuss our predictions for
the phase shifts at higher energies and higher angular mo-
menta as well as for various deuteron properties. We also
discuss the values of the pertinent low-energy constants
(LECs) and their interpretation in terms of resonance sat-
uration along the lines of ref. [12].

Before presenting the results, we would like to make
several comments concerning the theoretical uncertainty
and our way of estimating it. When performing calcula-
tions within chiral EFT up to a certain order O(Qn/λn),
where Q ∼ Mπ refers to a generic low-momentum scale
(soft scale) and λ to the scale at which new physics
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Fig. 1. S-wave NN phase shifts versus the nucleon laboratory energy. The light (dark) shaded band shows the NLO (NNLO)
predictions with CR chiral TPE. The cut-off Λ in the Lippmann-Schwinger equation is varied in the range Λ = 450–600 MeV
at NLO and Λ = 450–650 at NNLO. The cut-off Λ̃ in the pion loops is varied independently in the range Λ̃ = 500–700 MeV at
both NLO and NNLO. The filled circles depict the Nijmegen phase shift analysis (PSA) results [13].

appears (hard scale), the theoretical uncertainty results
from neglecting the higher-order terms and is, in gen-
eral, expected to be of the order ∼ (Q/λ)n+1. In par-
ticular, one expects the uncertainty of a scattering ob-
servable at c.m.s. momentum p to be of the order ∼
(max[ p, Mπ]/λ)

n+1. One should keep in mind that while
the hard scale λ is governed by Λχ ∼ Mρ in perturbative
calculations in the ππ and πN sectors, where dimensional
regularization is usually applied and no finite momentum
space cut-off is introduced, λ ∼ min[Λ, Λ̃, Mρ] = 450 MeV
should be adopted in our case.

Cut-off variation became a common practice to
estimate the uncertainty and to check consistency of non-
perturbative EFT calculations of few-nucleon systems.
Low-energy observables should not depend on the cut-off
value if all terms in the EFT expansion are included.
In practice, however, calculations are performed at a
finite order, so that some (small) residual dependence
of observables on the cut-off remains. One, in general,
expects that this cut-off dependence gets weaker when
higher-order terms are included. Thus, at first sight one
expects narrower bands for scattering observables at
NNLO than at NLO for the same variation of the cut-off.
This, however, does not hold true for the following reason:
the cut-off dependence at both NLO and NNLO has
to be compensated by inclusion of the contact interac-
tions (counterterms) of the order O(Q4/λ4) and higher.
The contact interactions appear only at even orders
O(Q2l/λ2l) in the low-momentum expansion while pion
exchanges contribute, in general, at both even and odd
orders. Since the same contact terms enter the expression
for the effective potential at NLO and NNLO, similar
cut-off dependence for observables should be expected
at these orders. Variation of the cut-off does probably
not provide an appropriate estimation of theoretical
uncertainty at NLO, since it does not rely on missing
O(Q3/λ3)-terms, but only on O(Q4/λ4)-corrections. No-
tice further that we were only able to vary the cut-off Λ
in the LS equation at NLO in the smaller range compared

to NNLO, which partially explains why the NLO bands
in many cases even turn out to be narrower than NNLO
ones. Another reason for that behavior has already been
discussed in I: variation of the spectral-function cut-off
Λ̃ has only small effect at NLO, since the leading TPE
in most cases provides a very small correction to the LO
potential. The corrections from subleading TPE at NNLO
are significantly larger in magnitude (at large q), which
leads to larger variation of the potential associated with
the spectral-function regularization, see I for more details.

3.1 S-waves

The phase shifts in the 1S0 and 3S1 partial waves are
shown in fig. 1. One observes a clear improvement when
going from NLO to NNLO and the description of both
phases is satisfactory up to the considered energy Elab =
200 MeV. One should keep in mind that this improvement
is entirely due to inclusion of the subleading TPE poten-
tial, since no new contact operators arise at NNLO and
thus the number of adjustable parameters is the same at
NLO and NNLO.

As expected, the bands at NLO and NNLO are roughly
of the same width. In the 1S0-channel, the band at NNLO
is even wider than at NLO; the latter, however, does not
properly describe the data at larger energies. We remind
the reader at this point that the bands at NLO under-
estimate the uncertainty of the theory at this order. It
is comforting to see that the bands at NLO and NNLO
overlap and that the Nijmegen values of the S-wave phase
shifts are reproduced at NNLO within the theoretical un-
certainty.

It is also of interest to consider the scattering length
and effective-range parameters. The effective-range expan-
sion in the S-waves takes the form

p cot(δ) = −1

a
+
1

2
r p2+v2 p

4+v3 p
6+v4 p

8+O(p10) , (3.1)
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Table 1. Scattering length and range parameters for the 1S0 partial wave using the CR NLO and NNLO potential compared
to the DR results (with Λ = 1000MeV) and to the Nijmegen phase shift analysis (PSA). The values v2,3,4 are based on the np

Nijm II potential and the values of the scattering length and the effective range are from ref. [14].

NLO, CR NNLO, CR NNLO, DR Nijmegen PSA

a [fm] −23.447 . . .− 23.522 −23.497 . . .− 23.689 −23.936 −23.739

r [fm] 2.60 . . . 2.62 2.62 . . . 2.67 2.73 2.68

v2 [fm3] −0.46 . . .− 0.47 −0.48 . . .− 0.52 −0.46 −0.48

v3 [fm5] 4.3 . . . 4.4 4.0 . . . 4.2 3.8 4.0

v4 [fm7] −20.7 . . .− 21.0 −19.9 . . .− 20.5 −19.1 −20.0

Table 2. Scattering length and range parameters for the 3S1 partial wave using the CR NLO and NNLO potential compared
to the DR results and to the Nijmegen PSA [15].

NLO, CR NNLO, CR NNLO, DR Nijmegen PSA

a [fm] 5.429 . . . 5.433 5.424 . . . 5.430 5.416 5.420

r [fm] 1.710 . . . 1.722 1.725 . . . 1.735 1.756 1.753

v2 [fm3] 0.06 . . . 0.07 0.04 . . . 0.05 0.04 0.04

v3 [fm5] 0.77 . . . 0.81 0.71 . . . 0.76 0.67 0.67

v4 [fm7] −4.3 . . .− 4.4 −4.1 . . .− 4.3 −4.1 −4.0

where p is the nucleon centre-of-mass momentum, a is the
scattering length, r is the effective range and the vi are the
shape parameters. The coefficients in the effective-range
expansion are governed by the long-distance physics as-
sociated with exchange of pions and thus serve as a good
testing ground for the convergence of the chiral expan-
sion [16]. To be specific, let us consider the 1S0 partial
wave. For each value of the cut-off Λ in the Lippmann-
Schwinger equation one has to determine the values of
the LECs C̃1S0

, C1S0
, which accompany the (partial-wave

projected) contact operators without and with two deriva-
tives, respectively. These LECs can be fixed, for instance,
from the first two coefficients in the effective-range ex-
pansion, i.e. from a and r, so that predictions for the vi’s
can be made. Alternatively, one can fix them from a fit to
the phase shift at low energy and then calculate all coef-
ficients a, r and vi. We will adopt this second method in
what follows.

In table 1 we present our results for the effective range
coefficients in the 1S0 channel. Already the NLO results
are in a reasonable agreement with the data (as given by
the Nijmegen PSA). At NNLO we find an improved de-
scription for all effective-range coefficients. The scattering
length and effective range are still not exactly reproduced
at this order if a global fit to data is performed. The un-
certainty for the scattering length and effective range at
NNLO resulting from variation of the cut-offs Λ and Λ̃
is of the order of 0.2 and 0.05 fm, respectively, which is
much larger than the deviations from the experimental
values (∼ 0.05 and ∼ 0.01 fm). The shape coefficients are
reproduced at NNLO within the theoretical uncertainty.

We also show the result based on the DR NNLO poten-
tial with the cut-off Λ in the Lippmann-Schwinger equa-
tion taken as Λ = 1000 MeV. Notice that there are two
unphysical deeply bound states in each of the 1S0 and
3S1-

3D1 channels in that case. The results for the effective-
range coefficients are a bit less precise than the ones ob-
tained with CR TPE.

Our results for the effective-range parameters in the
3S1 channel are shown in table 2. Similarly to the pre-
viously considered case, we observe at NNLO an im-
proved description for all coefficients. The predicted val-
ues of the scattering length and effective range are close
to the experimental ones (within 0.1% and 1%, respec-
tively). In the case of the 3S1 channel, the DR results
with Λ = 1000 MeV are slightly more precise than the
CR ones.

3.2 P-waves

Our results for the P -waves and the mixing angle ε1 are
shown in fig. 2. While the 1P1,

3P1 and
3P2 phase shifts are

visibly improved at NNLO compared to the NLO results,
the NNLO results for the 3P0 phase shift disagree with the
data for energies higher than Elab ∼ 100 MeV, where the
NLO results are in a better agreement. At the moment,
we do not have an explanation for this disagreement with
the data in the 3P0 channel. We have checked that this is
corrected at N3LO, where a new counterterm appears in
that partial wave. As in the case of S-waves, the bands at
NLO and NNLO are of a similar width. The theoretical
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Fig. 2. P -wave NN phase shifts and mixing angle ε1 versus the nucleon laboratory energy. For notations see fig. 1.

uncertainty in the 1P1 channel is probably underestimated
by the variation of the cut-offs Λ, Λ̃.

In general, our NNLO results for the phase shifts based
upon CR TPE look similar to the ones of ref. [8], where di-
mensional regularization has been used to calculate pion
loops. In the latter case, the TPE potential shows un-
physically strong attraction at intermediate and short dis-
tances, see [11,1] for more details. Although a reasonably
good description is possible with DR TPE at NNLO, as
documented in [8], unphysical deeply bound states arise in
D- and lower partial waves and one has serious problems
with the convergence of the chiral expansion. In partic-
ular, changing the value of the cut-off in the Lippmann-

Schwinger equation clearly leads to a strong variation of
the D-wave phase shifts, where the potential still turns
out to be very strong. The problem with the convergence
is manifest, since there are no counterterms to compensate
this cut-off dependence at NNLO. Using spectral-function
regularization in the pion loops as discussed in I, we are
now able to describe the data equally well as with the DR
version and in addition:

– one can use the same values for the cut-off in the
Lippmann-Schwinger equation in the LO and NLO
versions, which are slightly below the mass of the ρ-
meson,

– one does not have spurious deeply bound states,
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Fig. 3. D-wave NN phase shifts and mixing angle ε2 versus the nucleon laboratory energy. For notations see fig. 1.

– one has a convergent expansion.

Notice that we use here the same values for the LECs c1,4
as in ref. [8] and somewhat smaller in magnitude value for
the LEC c3. Further, we do not include the (incomplete)
set of leading relativistic (1/m) corrections as done in
that paper.

3.3 D- and selected higher partial waves

The results for D-waves have already been analyzed in I
making use of the Born approximation. In fig. 3 we show
our results for D-waves obtained by solving the LS equa-
tion. As expected, the results are quite similar to the ones

found in I. The small differences like, e.g., slightly dif-
ferent shape of the 3D2 and ε2 phase shifts, arise due
to introduction of the exponential regulator function in
eq. (2.13), the exact solution of the LS equation as well
as due to a slightly different value of the LEC c3 adopted
in the present work. Similar results for the phase shifts in
the present work and in I confirm the high accuracy of the
Born approximation in these channels.

As in the previously considered channels, the bands at
NLO and NNLO are of a comparable width (with excep-
tion of the 1D2 partial wave), and the NNLO results are
in a better agreement with the data.
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Fig. 4. Selected peripheral NN phase shifts versus the nucleon laboratory energy. For notations see fig. 1.

Table 3. Deuteron properties derived from the CR chiral potential at NLO and NNLO compared to the DR NNLO results of
[8], one “realistic” potential and the data. Here, Ed is the binding energy, Qd the quadrupole moment, η the asymptotic D/S
ratio, rd the root-mean-square matter radius, AS the strength of the asymptotic S-wave normalization and PD the D-state
probability. ? denotes an input quantity.

NLO, CR NNLO, CR NNLO, DR CD-Bonn Exp.

Ed [MeV] −2.171 . . .− 2.186 −2.189 . . .− 2.202 −2.230 −2.225? −2.225

Qd [fm2] 0.273 . . . 0.275 0.271 . . . 0.275 0.270 0.270 0.286

η 0.0256 . . . 0.0257 0.0255 . . . 0.0256 0.0257 0.0255 0.0256

rd [fm] 1.973 . . . 1.974 1.970 . . . 1.972 1.970 1.966 1.967

AS [fm−1/2] 0.868 . . . 0.873 0.874 . . . 0.879 0.886 0.885 0.885

PD[%] 3.46 . . . 4.29 3.53 . . . 4.93 6.71 4.83 –

We show in fig. 4 selected higher partial waves, which
also display a very similar behavior to the one observed
in I. We remind the reader that a significant disagreement
with the data in the 3G5 channel at both NLO and NNLO
should not be considered as a problem because of the ex-
ceptionally small value of the phase shift in this particular
channel (more than 10 times smaller in magnitude com-
pared to other G-waves).

3.4 Deuteron properties

We now turn to the bound-state properties. We stress that
we do not use the deuteron binding energy as a fit param-
eter as it is frequently done but rather adopt the same
parameters as obtained in the fit to the low phases. In ta-
ble 3 we collect the resulting deuteron properties, in com-
parison to the DR results with Λ = 1000MeV and the
CD-Bonn potential. First, we note a clear improvement
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when going from NLO to NNLO. In particular, the pre-
dicted binding energy deviates by 1%–1.5% at NNLO to
be compared with the ∼ 2%–2.5% deviation at NLO. Also
visibly improved are the root-mean-square matter radius
rd and the asymptotic S-wave normalization strength AS .
For rd, a surprisingly good agreement with the data is ob-
served: the NLO (NNLO) prediction deviates from the ex-
perimental value by less than 0.35% (0.25%). Deviations
from the data for the asymptotic S-wave normalization
strength AS of ∼ 2% (∼ 1%) at NLO (NNLO) are of the
expected size: for a typical deuteron observable, one ex-
pects the uncertainty at NLO (NNLO) to be of the order
∼ M3

π/(450MeV)3 ∼ 3% (∼ M4
π/(450MeV)4 ∼ 1%). The

quadrupole moment Qd is the only deuteron property for
which our predictions seem to disagree with the observed
value by a somewhat larger amount than expected, namely
by ∼ 3.8%–4.5% at NLO and ∼ 3.8%–5.2% at NNLO.
It is, however, well known that Qd is rather sensitive to
short-range physics, see, e.g., [17]. The deuteron quadru-
pole moment also turns out to be underpredicted by ∼ 4%
in modern potential model calculations1. Notice further
that similar values for Qd where found in ref. [18], where
DR was used and the pertinent LECs were fine-tuned to
the deuteron binding energy.

The DR NNLO predictions shown in table 3 are in a
better (somewhat worse) agreement with the data for AS

(Qd) and of the same quality for the other observables as
the CR NNLO results.

3.5 Low-energy constants and resonance saturation

We are now in the position to confront the LECs deter-
mined from chiral effective field theory with the highly
successful phenomenological/meson exchange models of
the nuclear force following the lines of ref. [12].

In this work we will consider the Bonn-B [19] and
Nijm 93 [20] potentials, which are genuine one-boson ex-
change (OBE) models. In these models the long-range
part of the interaction is given by OPE (including a pion-
nucleon form factor), whereas shorter-distance physics is
expressed as a sum over heavier-mesons exchange contri-
butions:

VNN = Vπ +
∑

M=σ,ρ,...

VM . (3.2)

Here some mesons can be linked to real resonances (like,
e.g., the ρ-meson) or are parameterizations of certain
physical effects, e.g. the light scalar-isoscalar σ-meson is
needed to supply the intermediate-range attraction (but
it is not a resonance). The corresponding meson-nucleon
vertices are given in terms of one (or two) coupling con-
stant(s) and corresponding form factor(s), characterized
by some cut-off scale. These form factors are needed
to regularize the potential at small distances (large

1 We have simply applied the same standard formula which
is also is used in boson exchange models for better compari-
son. One should keep in mind that this formula relies on the
single-nucleon current and does not incorporate relativistic cor-
rections.

...
M

= + +

Fig. 5. Expansion of a meson exchange diagram in terms of
local four-nucleon operators. The dashed and solid lines de-
note the meson M = ρ, σ, ω, . . . and the nucleons, respectively.
The blob and the square denote insertions with zero and two
derivatives, in order. The ellipsis stands for operators with
more derivatives.

momenta), but they should not be given a physical in-
terpretation. As depicted in fig. 5 for nucleon momentum
transfer below the masses of the exchanged mesons, one
can interpret such exchange diagrams as a sum of local
operators with increasing number of derivatives (momen-
tum insertions). This is explained in detail in ref. [12].
In that work we power-expanded the short-range part
of different phenomenological potential models and com-
pared the resulting contact operators with the ones in the
EFT approach. The latter have to be corrected by adding
the corresponding power-expanded TPE contributions,
which are not present in the phenomenological models.
We have then demonstrated explicitly that the values of
the LECs Ci determined from various phenomenological
OBE models are close to the values found in EFT at NLO
and NNLO. The TPE contributions have been calculated
in [12] using dimensional regularization. In that work
we have restricted ourselves to the NNLO version with
numerically small values of the LECs c3,4, c3 = −1.15,
c4 = 1.20 GeV−1, which are not consistent with the πN
system. Using the values of these LECs obtained from
the πN system in the TPE potential calculated with
dimensional regularization (or equivalent schemes) leads,
as explained before, to convergence problems due to the
strong attraction in the central part of the potential. In
particular, theD-wave phase shifts turn out to be strongly
cut-off dependent. Further, unphysical deeply bound
states arise in low partial waves. Obviously, no resonance
saturation can be established for this NNLO version of the
potential, which is strongly non-phase-equivalent to the
phenomenological OBE models. For example, the LECs Ci
in this NNLO version are typically several times larger in
magnitude and differ very much from the values at NLO.

We will now demonstrate how resonance saturation
works for the chiral NN forces at NLO and NNLO in-
troduced above, where the new spectral-function regular-
ization has been used to derive the TPE contributions.
Differently to ref. [12], all LECs ci are now consistent
with πN scattering. In table 4 we compare the values of
the LECs Ci at NLO and NNLO with the ones result-
ing from the OBE models as explained before. We re-
mind the reader that the contribution from chiral TPE
should be accounted for properly in order to allow for a
meaningful comparison with the OBE models. To achieve
that, we power-expand the chiral TPE at NLO and NNLO
and identify the corresponding contributions to the LECs,
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Table 4. The LECs Ci at NLO and NNLO compared with the results from the Bonn-B and Nijm 93 OBE potential models.
Also shown are contributions from chiral TPE as explained in text. The C̃i are in 104 GeV−2 and the Ci in 104 GeV−4.

LEC TPE (NLO) TPE (NNLO) Ci (NNLO) Ci (NNLO) Bonn-B Nijm 93

C̃1S0 −0.004+0.000
−0.001

−0.004+0.000
−0.001

−0.117+2.271
−0.042

−0.158+0.178
−0.004

−0.117 −0.061

C1S0 −0.570+0.036
−0.022

−0.443+0.078
−0.057

1.294+2.873
−0.322

1.213+0.408
−0.084

1.276 1.426

C̃3S1 0.013+0.001
−0.000

−0.004+0.000
−0.001

−0.135+0.025
−0.021

−0.137+0.017
−0.027

−0.101 −0.014

C3S1 0.638+0.025
−0.044

−0.443+0.078
−0.057

0.231+0.112
−0.007

0.523+0.197
−0.039

0.660 0.940

Cε1 −0.190+0.012
−0.006

0.205+0.024
−0.035

−0.325+0.000
−0.036

−0.395+0.007
−0.072

−0.410 −0.343

C1P1 −0.067+0.007
−0.005

−0.090+0.013
−0.009

0.146+0.005
−0.010

0.126+0.023
−0.017

0.454 0.119

C3P0 −0.425+0.025
−0.014

0.006+0.003
−0.003

0.923+0.142
−0.103

0.920+1.063
−0.109

0.921 0.802

C3P1 0.246+0.009
−0.016

0.247+0.032
−0.044

−0.260+0.003
−0.005

−0.108+2.364
−0.176

−0.075 −0.197

C3P2 −0.022+0.000
−0.000

0.151+0.020
−0.028

−0.262+0.032
−0.073

−0.421+0.074
−0.052

−0.396 −0.467
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Fig. 6. “Running” of the LEC C3P1 with the cut-off Λ at
NNLO. The cut-off Λ̃ in the spectral-function representation
is fixed at our central value Λ̃ = 600 MeV.

which are given analytically in appendix A. Notice that
differently to [12], these contributions depend now on the

spectral-function cut-off Λ̃. The second and third columns
in table 4 show the corresponding numerical results at
NLO and NNLO for the central value Λ̃ = 600 MeV, re-
spectively. The indicated uncertainty refers to the cut-off
variation Λ̃ = 500–700 MeV. The fourth and fifth columns
contain the values of the LECs Ci at NLO and NNLO,
where the just discussed contributions from TPE have al-
ready been added. The numbers are presented for our cen-
tral values of Λ and Λ̃, Λ = 550 MeV and Λ̃ = 600 MeV
and the uncertainties refer to variations Λ̃ = 500–700 MeV
and Λ = 450–600 MeV (Λ = 450–650 MeV) at NLO
(NNLO). Notice that the uncertainties due to the vari-

ation of Λ and Λ̃ are very large in several cases: for C̃1S0

and C1S0 at NLO and for C3P0 and C3P1 at NNLO. Such

a strong variation in the values of the LECs arises when
the cut-off Λ in the LS equation becomes too large and
one leaves the plateau region for the corresponding LEC
Ci(Λ). This situation is exemplified in fig. 6, where we
show the Λ-dependence of the LEC C3P1 at NNLO for
Λ̃ = 600 MeV. The Λ-dependence of C3P1 is similar to
the one of the three-nucleon force observed in ref. [21]2.
The first branch in fig. 6 (for Λ . 730 MeV) corresponds
to the case of no deeply bound states. For larger values of
Λ unphysical deeply bound states arise. In that case the
situation is similar to the DR NNLO analysis of ref. [8].
Clearly, it only makes sense to discuss resonance satura-
tion of the Ci’s in the plateau region of the first branch,
where they only change modestly and where the effective
potential is at least not strongly non-phase-equivalent to
the OBE models. Notice that the strong variation of the
LECs with the cut-off did not occur in ref. [12] simply
because Λ was varied in a much smaller range and never
left the plateau region.

The last two columns in table 4 show the LECs as
predicted by resonance saturation based upon the Nijm 93
and Bonn-B potential models. As in ref. [12], we observe a
remarkable agreement between the LEC values obtained
from fit to NN phase shifts in the EFT approach and the
ones resulting from the OBE models.

4 Summary and conclusions

In this paper we have considered the two-nucleon poten-
tial in chiral effective field theory, making use of the novel
method of regularizing the pion loop integrals introduced

2 The long-range part of the potential in that reference be-
haves like 1/r2 at short distances, while the CR chiral TPE at
NNLO is even more singular and behaves like 1/r5, see I.
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in I. For the low partial waves and the deuteron consid-
ered here, one has to solve the LS equation with the prop-
erly regulated potential, cf. eq. (2.13). One thus has to
deal with two different cut-offs, the first one related to
the spectral-function regularization (denoted Λ̃) and the
second one related to the regularization of the potential
in the LS equation (denoted Λ). As pointed out, both of
these cut-offs can be chosen in the same range. We obtain
the following results:

1) We have varied the cut-off Λ in the LS equation in
the range 450–600 MeV at NLO and 450–650 MeV
at NNLO, which is a significantly larger range than
in ref. [11]. The cut-off Λ̃ is varied independently in
the range 500–700 MeV, which is completely consistent
with the variation of Λ.

2) As shown in fig. 1, we obtain a modest/satisfactory
description of the S-waves at NLO/NNLO when fit-
ting the Nijmegen PSA for energies below 100 MeV.
Note that the NNLO result only differs from the NLO
one by inclusion of subleading two-pion exchange cor-
rections. The LECs c1,3,4 which enter this sublead-
ing TPE contributions are consistent with the analysis
of pion-nucleon scattering in chiral perturbation the-
ory. The resulting S-wave scattering lengths, effective
ranges and higher-order range parameters come out in
good agreement with the ones deduced from the Nij-
megen PSA, cf. tables 1 and 2. In contrast to earlier
work [8] employing dimensional regularization, we have
no unphysical deeply bound states in the S-waves (and
any other partial wave).

3) At NNLO, all P -waves and the mixing parameter ε1
are well described at NNLO below Elab ∼ 100 MeV
and improved as compared to their NLO representa-
tions (one parameter per phase at NLO and NNLO),
with the exception of the 3P0 partial wave. We stress
that at NNNLO this deficiency is cured [5].

4) The D- and higher partial waves come out similar to
the results obtained in Born approximation in I. For
further discussion, we refer to that paper.

5) The deuteron properties collected in table 3 are given
parameter-free. We find a slight improvement in the
quadrupole moment as compared to the calculation
based on dimensional regularization (as long as the
binding energy is not used as an input parameter).

6) The theoretical error bars on the various partial waves
and the bound-state properties come out consistently
with expectations, see, in particular, the discussion in
the beginning of sect. 3.

7) We have shown that the numerical values of the
four-nucleon LECs are in good agreement with the
ones derived from semi-phenomenological boson ex-
change models once the two-pion exchange contribu-
tion is properly accounted for, as detailed in the ap-
pendix. This strengthens the conclusions of ref. [12]
and bridges the gap between the chiral EFT ap-
proaches and more phenomenological models describ-
ing the forces between two nucleons.

It is now of utmost importance to investigate the next
order, that is the NNNLO corrections, to achieve a truly

accurate description of all important partial waves. Work
along these line is underway [5] (for a first attempt using
dimensional regularization, see [22]).

This work is supported in part by the Deutsche Forschungsge-
meinschaft (E.E.).

Appendix A. Reduction of the two-pion

exchange contributions

As stated before, we have to add the contribution of the
TPE to the LECs so as to be able to compare with boson
exchange potentials. Expanding the explicit expressions
for the renormalized TPE potential given before in powers
of q allows for a mapping on the spectroscopic LECs (of
course, the TPE contains many other contributions, which
are, however, of no relevance for this discussion). At NLO
we get

C̃NLO
1S0 = −1

3
C̃NLO

3S1 = 18α (1 + 4g2
A − 8g4

A)M
2
πΛ̃

2 ,

CNLO
1S0 = 3α

[

(2 + 17g2
A − 88g4

A)Λ̃
2

− 2 (1 + 4g2
A − 8g4

A)M
2
π

]

,

CNLO
3S1 = 9α

[

− (2 + 17g2
A − 40g4

A)Λ̃
2

+ 2 (1 + 4g2
A − 8g4

A)M
2
π

]

,

CNLO
ε1 = −54

√
2α g4

A Λ̃2 , (A.1)

CNLO
1P1 = 6α

[

(2 + 17g2
A − 16g4

A)Λ̃
2

− 2 (1 + 4g2
A − 8g4

A)M
2
π

]

,

CNLO
3P0 = −2α

[

(2 + 17g2
A + 74g4

A)Λ̃
2

− 2 (1 + 4g2
A − 8g4

A)M
2
π

]

,

CNLO
3P1 = 2α

[

− (2 + 17g2
A − 61g4

A)Λ̃
2

+ 2 (1 + 4g2
A − 8g4

A)M
2
π

]

,

CNLO
3P2 = 2α

[

− (2 + 17g2
A − 7g4

A)Λ̃
2

+ 2 (1 + 4g2
A − 8g4

A)M
2
π

]

,

where

α =

√

Λ̃2 − 4Mπ

432F 4
π Λ̃

3 π
. (A.2)

The above expressions coincide exactly with the ones given
in ref. [12] in the limit Λ̃→∞. Similarly, we can give the
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additional TPE NNLO contributions to the various LECs:

C̃NNLO
1S0 = C̃NNLO

3S1 = −36β (2c1 − c3)M
2
π Λ̃

2 ,

CNNLO
1S0 = CNNLO

3S1 = 3β
[

− 4c4Λ̃
2

− 2c1(5Λ̃
2 − 2Λ̃Mπ − 4M2

π)

+ c3(11Λ̃
2 − 2Λ̃Mπ − 4M2

π)
]

,

CNNLO
ε1 = 12

√
2β c4 Λ̃

2 , (A.3)

CNNLO
1P1 = 2β

[

− 12c4Λ̃
2 + 2c1(5Λ̃

2 − 2Λ̃Mπ − 4M2
π)

− c3(11Λ̃
2 − 2Λ̃Mπ − 4M2

π)
]

,

CNNLO
3P0 = 2β

[

− 8c4Λ̃
2 + 2c1(5Λ̃

2 − 2Λ̃Mπ − 4M2
π)

− c3(11Λ̃
2 − 2Λ̃Mπ − 4M2

π)
]

,

CNNLO
3P1 = 2β

[

2c4Λ̃
2 + 2c1(5Λ̃

2 − 2Λ̃Mπ − 4M2
π)

− c3(11Λ̃
2 − 2Λ̃Mπ − 4M2

π)
]

,

CNNLO
3P2 = 2β

[

− 2c4Λ̃
2 + 2c1(5Λ̃

2 − 2Λ̃Mπ − 4M2
π)

− c3(11Λ̃
2 − 2Λ̃Mπ − 4M2

π)
]

,

where

β =
g2
AMπ(Λ̃− 2Mπ)

48F 4
π Λ̃

3
. (A.4)

These expressions depend on the dimension two LECs
c1,3,4 as discussed before and coincide with the ones given

in ref. [12] in the limit Λ̃ → ∞ modulo 1/m corrections,
which are not considered in the present work.

Finally, it should be kept in mind that we use here the
same notation as in our previous work [8], according to
which the contact terms that are nonanalytic in the pion
mass and result from TPE, see, e.g., I, are not shown
explicitly. In practical applications to the NN system at
fixed value ofMπ, such terms cannot be disentangled from
the zero-range counterterms (contact interactions from
the Lagrangian) and therefore do not need to be treated

separately. A more precise treatment is required if the pion
mass dependence of the nucleon force is studied [23–25].
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1. E. Epelbaum, W. Glöckle, U.-G. Meißner, Eur. Phys. J. A
19, 125 (2003).

2. N. Kaiser, R. Brockmann, W. Weise, Nucl. Phys. A 625,
758 (1997).
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